The ω6-fatty acid, arachidonic acid, regulates the conversion of white to brite adipocyte through a prostaglandin/calcium mediated pathway

نویسندگان

  • Didier F. Pisani
  • Rayane A. Ghandour
  • Guillaume E. Beranger
  • Pauline Le Faouder
  • Jean-Claude Chambard
  • Maude Giroud
  • Alexandros Vegiopoulos
  • Mansour Djedaini
  • Justine Bertrand-Michel
  • Michel Tauc
  • Stephan Herzig
  • Dominique Langin
  • Gérard Ailhaud
  • Christophe Duranton
  • Ez-Zoubir Amri
چکیده

OBJECTIVE Brite adipocytes are inducible energy-dissipating cells expressing UCP1 which appear within white adipose tissue of healthy adult individuals. Recruitment of these cells represents a potential strategy to fight obesity and associated diseases. METHODS/RESULTS Using human Multipotent Adipose-Derived Stem cells, able to convert into brite adipocytes, we show that arachidonic acid strongly inhibits brite adipocyte formation via a cyclooxygenase pathway leading to secretion of PGE2 and PGF2α. Both prostaglandins induce an oscillatory Ca(++) signaling coupled to ERK pathway and trigger a decrease in UCP1 expression and in oxygen consumption without altering mitochondriogenesis. In mice fed a standard diet supplemented with ω6 arachidonic acid, PGF2α and PGE2 amounts are increased in subcutaneous white adipose tissue and associated with a decrease in the recruitment of brite adipocytes. CONCLUSION Our results suggest that dietary excess of ω6 polyunsaturated fatty acids present in Western diets, may also favor obesity by preventing the "browning" process to take place.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arachidonic acid-dependent gene regulation during preadipocyte differentiation controls adipocyte potential[S]

Arachidonic acid (AA) is a major PUFA that has been implicated in the regulation of adipogenesis. We examined the effect of a short exposure to AA at different stages of 3T3-L1 adipocyte differentiation. AA caused the upregulation of fatty acid binding protein 4 (FABP4/aP2) following 24 h of differentiation. This was mediated by the prostaglandin F(2α) (PGF(2α)), as inhibition of cyclooxygenase...

متن کامل

O-16: Metabolism of Exogenous Fatty Acids, Fatty Acid-Mediated Cholesterol Efflux, PKA and PKC Pathways in Boar Sperm Acrosome Reaction

Background: For understanding the roles of fatty acids on the induction of acrosome reaction which occurs under association of cholesterol efflux and PKA or PKC pathways in boar spermatozoa, metabolic fate of alone and combined radiolabeled 14C-oleic acid and 3H-linoleic acid incorporated in the sperm was compared, and behavior of cholesterol and effects of PKA and PKC inhibitors upon fatty aci...

متن کامل

Arachidonic acid inhibits lipogenic gene expression in 3T3-L1 adipocytes through a prostanoid pathway.

This report examines the effect of polyunsaturated fatty acids (PUFA) on lipogenic gene expression in cultured 3T3-L1 adipocytes. Arachidonic acid (20:4, n-6) and eicosapentaenoic acid (20:5, n-3) suppressed mRNAs encoding fatty acid synthase (FAS) and S14, but had no effect on beta-actin. Using a clonal adipocyte cell line containing a stably integrated S14CAT fusion gene, oleic acid (18:1, n-...

متن کامل

15-Deoxy-Δ12,14-Prostaglandin J2 Protects PC12 cells from LPS-Induced Cell Death Through Nrf2 pathway in PPAR-γ Dependent Manner

Introduction: The inflammatory response requires a coordinated integration of various signaling pathway including cyclooxygenase (COX). COX catalyzes the formation of prostaglandins from arachidonic acid. Among prostaglandins, 15-Deoxy-D12, 14-prostaglandin J2 (15d-PGJ2), an endogenous ligand of Peroxisome proliferator-activated receptor-gamma (PPAR-γ), has been demonstrated to have anti-inflam...

متن کامل

Arachidonic acid-dependent inhibition of adipocyte differentiation requires PKA activity and is associated with sustained expression of cyclooxygenases.

Arachidonic acid inhibits adipocyte differentiation of 3T3-L1 cells via a prostaglandin synthesis-dependent pathway. Here we show that this inhibition requires the presence of a cAMP-elevating agent during the first two days of treatment. Suppression of protein kinase A activity by H-89 restored differentiation in the presence of arachidonic acid. Arachidonic acid treatment led to a prolonged a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014